Evaluation of Signalized Intersection Capacity and PCE Using Linear Regression in Mixed Traffic

Iqra Mona Meilinda, Muhammad Dani Auliya, Sugiarto Sugiarto, Yusria Darma

Abstract


 

Abstrak

Persimpangan bersinyal memainkan peran penting dalam manajemen lalu lintas perkotaan, terutama di wilayah dengan karakteristik lalu lintas campuran seperti Banda Aceh. Studi ini bertujuan untuk menentukan nilai nilai Ekivalen Mobil Penumpang (EMP) berdasarkan data aliran jenuh aktual pada simpang bersinyal AMD Batoh. Data dikumpulkan melalui rekaman video selama 120 siklus waktu hijau pada empat pendekatan simpang, dengan klasifikasi kendaraan meliputi Sepeda Motor (MC), Kendaraan Ringan (LV), Becak Bermotor (MR), dan Kendaraan Berat (HV). Analisis regresi linier menghasilkan koefisien positif, yang menunjukkan bahwa setiap penambahan satu unit kendaraan meningkatkan waktu hijau efektif sebesar 0,14 detik untuk MC, 1,12 detik untuk LV, 0,73 detik untuk MR, dan 1,58 detik untuk HV. Model regresi juga menghasilkan nilai Adjusted R² sebesar 0,94, yang menunjukkan tingkat kesesuaian model yang sangat baik. Nilai EMP lokal yang diperoleh berbeda dari referensi standar dalam PKJI 2023, khususnya untuk kendaraan informal. Temuan ini menekankan pentingnya penyesuaian lokal dalam analisis kapasitas simpang guna mendukung perencanaan lalu lintas yang lebih akurat dan kontekstual.

Kata Kunci: Simpang Bersinyal; Ekivalen Mobil Penumpang (EMP); Aliran Jenuh; Regresi Linier; Lalu Lintas Campuran

Abstract

Signalized intersections play a vital role in urban traffic management, especially in areas with mixed traffic characteristics such as Banda Aceh. This study aims to determine the Passenger Car Equivalent (PCE) values based on actual saturation flow data at the AMD Batoh signalized intersection. Data were collected through video recordings over 120 green time cycles across four intersection approaches, with vehicle classifications including Motorcycles (MC), Light Vehicles (LV), Motorized Rickshaws (MR), and Heavy Vehicles (HV). Linear regression analysis produced positive coefficients, indicating that each additional vehicle unit increases the effective green time by 0.14 seconds for MC, 1.12 seconds for LV, 0.73 seconds for MR, and 1.58 seconds for HV. The regression model also yielded an Adjusted R² of 0.94, demonstrating a strong model fit. The resulting local PCE values differ from the standard references in PKJI 2023, particularly for informal vehicles. These findings highlight the importance of localized adjustment in intersection capacity analysis to support more accurate and context-sensitive traffic planning.

 Keywords: Signalized Intersection; Passenger Car Equivalent (PCE); Saturation Flow; Linear Regression; Mixed Traffic


Keywords


Signalized Intersection; Passenger Car Equivalent (PCE); Saturation Flow; Linear Regression; Local Adjustment; Mixed Traffic

Full Text:

PDF

References


Agustan, S. T., Putra, I. A. A., La Welendo, I., & Azikin, I. H. M. T. (2025). Urban & Regional Transportation Engineering The Conceptual Approach of Engineering Management. Uwais Inspirasi Indonesia.

Ahmed, A., Noman, S. M., Baig, M. A. U., Ngoduy, D., Adnan, M., Ismail, M. A., & Qadir, A. (2022). Estimating passenger car equivalent factors for heterogeneous traffic using occupancy-density linear regression model.

Transportation Research Record, 2676(8), 209–220.

Auliya, M. D., Sugiarto, S., & Darma, Y. (2024). Analisis Kinerja Simpang Bersinyal Berdasarkan Perhitungan Ulang Ekivalensi Mobil Penumpang Pada Simpang Bersinyal AMD dan Lhong Raya. Journal of The Civil Engineering Student, 6(2), 57–63.

Barmpounakis, E., & Geroliminis, N. (2020). on the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment. Transportation Research Part C: Emerging Technologies, 111, 50–71.

Barmpounakis, E. N., Vlahogianni, E. I., Golias, J. C., & Babinec, A. (2019). How accurate are small drones for measuring microscopic traffic parameters? Transportation Letters, 11(6), 332–340.

Bhattarai, S. (2024). Drone-Enabled Aerial Monitoring for Dynamic Traffic Control Using Multi-Modal Data Synthesis. Journal of Robotic Process Automation, AI Integration, and Workflow Optimization, 9(12), 23–35.

Bisio, I., Garibotto, C., Haleem, H., Lavagetto, F., &

Sciarrone, A. (2022). A systematic review of drone based road traffic monitoring system. Ieee Access, 10, 101537–101555.

Bouassida, S., Neji, N., Nouvelière, L., & Neji, J. (2020). Evaluating the impact of drone signaling in crosswalk scenario. Applied Sciences, 11(1), 157.

Bouhouras, E., & Basbas, S. (2021). Passenger car equivalent value for commercial vehicles: a new approach. Periodica Polytechnica Transportation Engineering, 49(4), 354–358.

Bouhouras, E., Kikeni, K., Siginos, A., Vouitsis, A., Voulgari, K., & Basbas, S. (2022). Is It Necessary to Calculate Passenger Car Equivalent Value for Commercial Vehicles in Urban Areas? Conference on Sustainable Urban Mobility, 1266–1277.

Chalermpong, S., Ratanawaraha, A., & Uchiyama, Y. (2025). Informal and Shared Mobility: Status, Challenges, and Opportunities in Southeast Asia. Volvo Research and Educational Foundations.

Eom, M., & Kim, B.-I. (2020). The traffic signal control problem for intersections: a review. European Transport Research Review, 12(1), 50.

Erliana, H., Yusra, C. L., & Rizka, F. (2020). Analisis Kinerja Jalan Pada Ruas Jalan Lintas Meulaboh–Tapak Tuan Kabupaten Nagan Raya. VOCATECH: Vocational Education and Technology Journal, 2(1), 1–10.

Faradilla, C. M., Abdullah, Z., Mukhlis, M., Usrina, N., Fithra, H., & Fikry, M. (2025). Pengaruh Kecepatan Kendaraan Akibat Pemasangan Speed Bump: Model Greenberg. VOCATECH: Vocational Education and Technology Journal, 6(2), 1–9.

Gholamhosseinian, A., & Seitz, J. (2022). A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles. IEEE Access, 10, 7937–7972.