Penentuan Sudut Kemiringan Optimal Instalasi Panel Surya Untuk Memaksimalkan Energi Output: Sistematic Literatur Review

T. M. Azis Pandria, Teuku Mizan Sya'rani Denk, Bambang Tripoli, Ary Firnanda, Herdian Saputra, Lissa Opirina

Abstract


Abstract

This paper presents a systematic literature review on determining the optimal tilt angle (OTA) for photovoltaic solar panel installation. The research method uses a systematic literature review approach by analyzing 30 scientific articles published between 2013 and 2025 from the IEEE Xplore, ScienceDirect, MDPI, and Springer databases. The analysis results show that geographic latitude is the dominant factor in determining OTA, with tropical regions requiring an angle of 5°-15° and mid-high latitude regions requiring 30°-60°. The research methodology has evolved from a simple empirical approach to the use of machine learning and artificial intelligence with a prediction accuracy of R² > 0.95. For equatorial regions such as Indonesia, the optimal angle ranges from local latitude ± 5° with low sensitivity to deviation (±5° only affects output < 3%). The study also identified that seasonal adjustment provides a 6-15% increase in output for mid-latitude regions, but is not cost-effective for tropical regions. The conclusions of this study provide practical recommendations based on geographic zones and identify research gaps related to climate change impacts, optimization for bifacial technology, and development of economically adaptive systems.

 

Keywords:

Solar panels; optimal tilt angle; energy optimization; systematic literature review

 

Abstrak

Naskah ini menyajikan tinjauan literatur sistematis tentang penentuan sudut kemiringan optimal (optimal tilt angle/OTA) untuk instalasi panel surya fotovoltaik. Metode penelitian menggunakan pendekatan systematic literature review dengan menganalisis 30 artikel ilmiah yang dipublikasikan antara tahun 2013 hingga 2025 dari database IEEE Xplore, ScienceDirect, MDPI, dan Springer. Hasil analisis menunjukkan bahwa lintang geografis merupakan faktor dominan dalam penentuan OTA, dengan wilayah tropis memerlukan sudut 5°-15° dan wilayah lintang menengah-tinggi memerlukan 30°-60°. Metodologi penelitian telah berkembang dari pendekatan empiris sederhana menuju penggunaan machine learning dan artificial intelligence dengan akurasi prediksi R² > 0.95. Untuk wilayah ekuatorial seperti Indonesia, sudut optimal berkisar antara lintang lokal ± 5° dengan sensitivitas rendah terhadap deviasi (±5° hanya mempengaruhi output < 3%). Penelitian juga mengidentifikasi bahwa penyesuaian musiman memberikan peningkatan output 6-15% untuk wilayah lintang menengah, namun tidak cost-effective untuk wilayah tropis. Simpulan penelitian ini memberikan rekomendasi praktis berbasis zona geografis dan mengidentifikasi gap penelitian terkait dampak perubahan iklim, optimalisasi untuk teknologi bifacial, dan pengembangan sistem adaptif yang ekonomis.

Kata Kunci:

            Panel surya; sudut kemiringan optimal; optimalisasi energi; Sistematic Literature Review

Full Text:

PDF

References


Abu-Jasser, A. (n.d.). A stand-alone photovoltaic system, case study: a residence in Gaza. https://www.researchgate.net/publication/44024723

Adaramola, M. S. (2014). Viability of grid-connected solar PV energy system in Jos, Nigeria. International Journal of Electrical Power & Energy Systems, 61, 64–69. https://doi.org/10.1016/J.IJEPES.2014.03.015

Anu George, & Robins Anto. (2012). Analytical and experimental analysis of optimal tilt angle of solar photovoltaic systems. International Conference on Green Technologies (ICGT), 234–239.

Asl-Soleimani, E., Farhangi, S., & Zabihi, M. S. (2001). The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy, 24(3–4), 459–468. https://doi.org/10.1016/S0960-1481(01)00029-5

Awasthi, A., Shukla, A. K., Murali Manohar, S. R., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392–405. https://doi.org/10.1016/J.EGYR.2020.02.004

Bakirci, K. (2012). General models for optimum tilt angles of solar panels: Turkey case study. Renewable and Sustainable Energy Reviews, 16(8), 6149–6159. https://doi.org/10.1016/J.RSER.2012.07.009

Benghanem, M. (2011). Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Applied Energy, 88(4), 1427–1433. https://doi.org/10.1016/J.APENERGY.2010.10.001

Blair, N., Diorio, N., Freeman, J., Gilman, P., Janzou, S., Neises, T., & Wagner, M. (2018). System Advisor Model (SAM) General Description (Version 2017.9.5). www.nrel.gov/publications.

Chang, T. P. (2008). Study on the optimal tilt angle of solar collector according to different radiation types. International Journal of Applied Science and Engineering, 6, 151.

Duffie, J. A. ., & Beckman, W. A. . (2013). Solar engineering of thermal processes. Wiley.

Fitri Dwi Kartikasari, Elieser Tarigan, Fenny Irawati, Maya Hilda Lestari Louk, Susana Limanto, & Endah Asmawati. (2023). Optimal solar panel tilt angle calculation and simulation in Indonesia: A Liu and Jordan sky isotropic model-based approach. International Journal of Science and Research Archive, 9(2), 116–121. https://doi.org/10.30574/ijsra.2023.9.2.0517

IEA. (2023). Solar PV - Analysis and forecast to 2028.

Irwanto, M., Irwan, Y. M., Safwati, I., Leow, W. Z., & Gomesh, N. (2014). Analysis simulation of the photovoltaic output performance. Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference, PEOCO 2014, 477–481. https://doi.org/10.1109/PEOCO.2014.6814476

Jacobson, M. Z., & Jadhav, V. (2018). World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy, 169, 55–66. https://doi.org/10.1016/J.SOLENER.2018.04.030

Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable Energy, 29(8), 1265–1275. https://doi.org/10.1016/J.RENENE.2003.12.014

Kambezidis, H. D. (2021). The solar radiation climate of Greece. Climate, 9(12). https://doi.org/10.3390/cli9120183

Khan, P. W., Byun, Y. C., & Lee, S. J. (2022). Optimal photovoltaic panel direction and tilt angle prediction using stacking ensemble learning. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.865413

Klein, S. A. (1977). Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4), 325–329. https://doi.org/10.1016/0038-092X(77)90001-9

Kumar, N. M., & Dinniyah, F. S. (2019). Influence of tilt angle on energy yields and performance ratios of grid connected photovoltaic generators in Southeast Asia. Progress in Industrial Ecology, 13(3), 264–279. https://doi.org/10.1504/pie.2019.10022059

Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1–19. https://doi.org/10.1016/0038-092X(60)90062-1

M. Bansal, D. K. Khatod, & R. P. Saini. (2014). Modeling and optimization of integrated renewable energy system for a rural site. 2014 International Conference on Reliability Optimization and Information Technology (ICROIT), 25–28.

Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi.org/10.1016/J.RSER.2016.01.044

Manzoor, H. U., Aaqib, S. M., Manzoor, T., Azeem, F., Ashraf, M. W., & Manzoor, S. (2025). Effect of Optimized Tilt Angle of PV Modules on Solar Irradiance for Residential and Commercial Buildings in Different Cities of Pakistan: Simulation-Based Study. Energy Science and Engineering, 13(4), 1831–1845. https://doi.org/10.1002/ese3.70004

Mezzina, B., García-Serrano, J., Bladé, I., Palmeiro, F. M., Batté, L., Ardilouze, C., Benassi, M., & Gualdi, S. (2022). Multi-model assessment of the late-winter extra-tropical response to El Niño and La Niña. Climate Dynamics, 58(7–8), 1965–1986. https://doi.org/10.1007/s00382-020-05415-y

Nicolás-Martín, C., Santos-Martín, D., Chinchilla-Sánchez, M., & Lemon, S. (2020). A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data. Renewable Energy, 161, 722–735. https://doi.org/10.1016/J.renene.2020.07.098

Nsengiyumva, W., Chen, S. G., Hu, L., & Chen, X. (2018). Recent advancements and challenges in Solar Tracking Systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250–279. https://doi.org/10.1016/J.RSER.2017.06.085

Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, 255–274. https://doi.org/10.1016/J.RSER.2012.11.035

Pierluigi Bonomo, & Francesco Frontini. (2024). Building Integrated Photovoltaics (BIPV): Analysis of the technological transfer process and innovation dynamics in the swiss building sector. MDPI, 14(6).

Rashid, K., Mohammadi, K., & Powell, K. (2020). Dynamic simulation and techno-economic analysis of a concentrated solar power (CSP) plant hybridized with both thermal energy storage and natural gas. Journal of Cleaner Production, 248, 119193. https://doi.org/10.1016/J.Jclepro.2019.119193

Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S., & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), 1580–1608. https://doi.org/10.1016/J.SOLENER.2010.12.002

Rinchi, B., Dababseh, R., Jubran, M., Al-Dahidi, S., Abdalla, M. E. B., & Ayadi, O. (2025). Global prediction of optimal solar panel tilt angles via machine learning. Applied Energy, 382, 125322. https://doi.org/10.1016/J.apenergy.2025.125322

Rusda, R., Dihya Ahmad Rasyid Ridho, & Marson Ady Putra. (2023). Analisis pengaruh sudut kemiringan terhadap penerimaan iradiasi matahari dan daya keluaran yang dihasilkan panel surya. PoliGrid, 4(1). https://doi.org/10.46964/poligrid.v4i1.18

Taboada, M. E., Cáceres, L., Graber, T. A., Galleguillos, H. R., Cabeza, L. F., & Rojas, R. (2017). Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renewable Energy, 105, 601–615. https://doi.org/10.1016/J.renene.2016.12.094

Tariq Muneer. (2007). Solar Radiation and Daylight Models (2nd Edition). Taylor & Francis Group.

Tsuchida, S., Nonaka, H., & Yamada, N. (2022). Deep reinforcement learning for the optimal angle control of tracking bifacial photovoltaic systems. Energies, 15(21). https://doi.org/10.3390/en15218083

Ulgen, K. (2006). Optimum tilt angle for solar collectors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(13), 1171–1180. https://www.tandfonline.com/doi/full/10.1080/00908310600584524?scroll=top&needAccess=true

Yassir, A., Zamzami, U., Fauzan, K., Hasannuddin, T., & Subhan. (2019). Optimization of tilt angle for photovoltaic: Case Study Sabang-Indonesia. IOP Conference Series: Materials Science and Engineering, 536(1). https://doi.org/10.1088/1757-899X/536/1/012055




DOI: https://doi.org/10.38038/vocatech.v7i2.273

Refbacks

  • There are currently no refbacks.


Vocatech : Vocational and Technology Journal
Unit Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu
Akademi Komunitas Negeri Aceh Barat
Komplek STTU Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23615
Telp. (0655) 7110271
Email: vocatech@aknacehbarat.ac.id


Vocatech: Vocational Education and Technology Journal Published by:
Lembaga Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu
Akademi Komunitas Negeri Aceh Barat


Indexed by:

GS2 logoCrossref logoGaruda logosinta-5 logosinta-5 logo

Creative Commons License logo

Vocatech: Vocational Education and Technology Journal Creative Commons Attribution-ShareAlike 4.0 International License.

Published by: Lembaga Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu Akademi Komunitas Negeri Aceh Barat