Sistem IoT Dan Algoritma Naive Bayes untuk Monitoring Kualitas Air Laut secara Real-Time

Mulyadi Myladi, Zulfan Khairil Simbolon, Haikal Murtaza

Abstract


Abstract

This study develops a real-time seawater quality monitoring system by integrating Internet of Things (IoT) technology and the Naive Bayes classification algorithm. The system utilizes an ESP32 microcontroller equipped with pH and turbidity sensors to collect seawater quality data from coastal areas. The sensor data are transmitted continuously to a Firebase Realtime Database and visualized through an Android-based mobile application developed using Flutter. The Naive Bayes model was trained using a public Kaggle dataset consisting of 5,569 water quality records classified into polluted and unpolluted categories, and then applied to classify real-time sensor data collected at Pantai Pusong, Aceh. Data preprocessing included cleaning, normalization, outlier handling, and class balancing. Experimental results show that the proposed system is capable of performing stable real-time data acquisition, transmission, and visualization. The Naive Bayes classification achieved an accuracy of 53%, with better performance in identifying unpolluted seawater conditions than polluted ones. Although the classification accuracy is moderate, the results demonstrate that the integration of IoT devices, cloud services, and probabilistic machine learning can provide a functional end-to-end solution for real-time seawater quality monitoring and early environmental awareness in coastal regions.

Keywords:

Internet of things; naive bayes; real-time monitoring; seawater quality; turbidity


Abstrak

Penelitian ini mengembangkan sistem monitoring kualitas air laut secara real-time dengan mengintegrasikan teknologi Internet of Things (IoT) dan algoritma klasifikasi Naive Bayes. Sistem menggunakan mikrokontroler ESP32 yang dilengkapi sensor pH dan turbidity untuk mengakuisisi data kualitas air laut di wilayah pesisir. Data sensor dikirimkan secara kontinu ke Firebase Realtime Database dan ditampilkan melalui aplikasi Android berbasis Flutter. Model Naive Bayes dilatih menggunakan dataset publik dari Kaggle yang terdiri dari 5.569 data kualitas air dengan dua kelas, yaitu air tercemar dan tidak tercemar, kemudian diterapkan untuk mengklasifikasikan data sensor real-time yang diperoleh dari Pantai Pusong, Aceh. Tahapan praproses data meliputi pembersihan data, normalisasi, penanganan outlier, dan penyeimbangan kelas. Hasil pengujian menunjukkan bahwa sistem mampu melakukan akuisisi, pengiriman, dan visualisasi data secara real-time dengan kinerja yang stabil. Evaluasi menggunakan confusion matrix menghasilkan tingkat akurasi klasifikasi sebesar 53%, dengan kemampuan yang lebih baik dalam mengidentifikasi kondisi air tidak tercemar dibandingkan air tercemar. Meskipun akurasi model masih terbatas, sistem yang dikembangkan menunjukkan keberhasilan integrasi IoT, layanan cloud, dan pembelajaran mesin sebagai solusi awal pemantauan kualitas air laut secara real-time di wilayah pesisir.

Kata Kunci:

Internet of things; kualitas air laut; naive bayes; pemantauan real-time; turbidity


Full Text:

PDF

References


Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2022). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 24(1), 234–284. https://doi.org/10.1109/COMST.2021.3120044

Badan Pusat Statistik. (2024). Statistik sumber daya laut dan pesisir Indonesia 2024. BPS Republik Indonesia.

Domínguez-Bolaño, T., Martínez, J. F., Hernández, J. A., & López, L. (2022). An IoT-based environmental monitoring system for coastal water quality assessment. Sensors, 22(9), 3351. https://doi.org/10.3390/s22093351

Effendi, H. (2019). Telaah kualitas air: Bagi pengelolaan sumber daya dan lingkungan perairan. Kanisius.

Fadhil, R., Hidayat, R., & Ananda, M. (2023). Sistem monitoring kualitas air berbasis Internet of Things pada wilayah pesisir. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(2), 215–224. https://doi.org/10.25126/jtiik.202310221

Intergovernmental Panel on Climate Change. (2023). Climate change 2023: Synthesis report. IPCC.

Kumar, P., Mallick, P. K., & Bhoi, A. K. (2022). IoT-based smart water quality monitoring system using machine learning techniques. Journal of Ambient Intelligence and Humanized Computing, 13(6), 2841–2856. https://doi.org/10.1007/s12652-021-03415-6

Lestari, D., & Widodo, A. (2023). Klasifikasi kualitas air menggunakan algoritma Gaussian Naive Bayes. Jurnal Teknologi dan Sistem Komputer, 11(1), 45–52. https://doi.org/10.14710/jtsiskom.2023.15011

Munawar, A., Siregar, R., & Putra, D. (2023). Implementasi IoT untuk monitoring kualitas perairan pesisir secara real-time. Jurnal Ilmu Kelautan, 28(3), 189–198. https://doi.org/10.14710/ik.2023.189

Prasetyo, E. (2020). Data mining: Konsep dan aplikasi menggunakan MATLAB. Andi Offset.

Rahman, A., Saputra, D., & Nabila, R. (2024). Penerapan machine learning untuk klasifikasi kualitas air berbasis sensor. Jurnal Rekayasa Sistem dan Teknologi Informasi, 8(1), 33–41. https://doi.org/10.29207/jrsti.v8i1.221

Rathi, S., Jain, P., & Meena, R. (2023). Smart environmental monitoring using IoT and cloud computing. International Journal of Computer Applications, 185(10), 1–7.

Setiawan, A., Nugroho, B., & Hartono, D. (2022). Analisis parameter fisika dan kimia air laut sebagai indikator pencemaran. Jurnal Ilmu Lingkungan, 20(2), 314–322. https://doi.org/10.14710/jil.20.2.314-322

Siregar, R., Lubis, M., & Harahap, F. (2022). Sistem monitoring kualitas air berbasis IoT dan cloud computing. Jurnal Teknologi dan Sistem Informasi, 9(4), 401–410.

United Nations Environment Programme. (2023). Global marine pollution assessment. UNEP.

Yusri, M., Anwar, S., & Khalid, M. (2024). Pengembangan sistem IoT berbasis ESP32 untuk monitoring kualitas air. Jurnal Informatika dan Rekayasa Elektronika, 7(1), 12–21. https://doi.org/10.36595/jire.v7i1.511

Zhang, L., Wang, Y., & Chen, X. (2021). A review of Naive Bayes classification in environmental monitoring. Environmental Modelling & Software, 143, 105093. https://doi.org/10.1016/j.envsoft.2021.105093




DOI: https://doi.org/10.38038/vocatech.v7i2.291

Refbacks

  • There are currently no refbacks.


Vocatech : Vocational and Technology Journal
Unit Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu
Akademi Komunitas Negeri Aceh Barat
Komplek STTU Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23615
Telp. (0655) 7110271
Email: vocatech@aknacehbarat.ac.id


Vocatech: Vocational Education and Technology Journal Published by:
Lembaga Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu
Akademi Komunitas Negeri Aceh Barat


Indexed by:

GS2 logoCrossref logoGaruda logosinta-5 logosinta-5 logo

Creative Commons License logo

Vocatech: Vocational Education and Technology Journal Creative Commons Attribution-ShareAlike 4.0 International License.

Published by: Lembaga Penelitian dan Pengabdian Masyarakat & Penjaminan Mutu Akademi Komunitas Negeri Aceh Barat